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Testing MOS Precipitation Downscaling for ENSEMBLES

Regional Climate Models over Spain

M. Turco1, P. Quintana-Segúı2, M.C. Llasat1, S. Herrera3, J. M. Gutiérrez3

Abstract. Model Output Statistics (MOS) has been recently proposed as an alterna-
tive to the standard perfect prognosis statistical downscaling approach for Regional Cli-
mate Model (RCM) outputs. In this case, the model output for the variable of interest
(e.g. precipitation) is directly downscaled using observations. In this paper we test the
performance of a MOS implementation of the popular analog methodology (referred to
as MOS analog) applied to downscale daily precipitation outputs over Spain. To this aim,
we consider the state-of-the-art ERA40-driven RCMs provided by the EU-funded EN-
SEMBLES project and the Spain02 gridded observations dataset, using the common pe-
riod 1961-2000. The MOS analog method improves the representation of the mean regimes,
the annual cycle, the frequency and the extremes of precipitation for all RCMs, regard-
less of the region and the model reliability (including relatively low-performing models),
while preserving the daily accuracy. The good performance of the method in this com-
plex climatic region suggests its potential transferability to other regions. Furthermore,
in order to test the robustness of the method in changing climate conditions, a cross-
validation in driest or wettest years was performed. The method improves the RCM re-
sults in both cases, especially in the former.

1. Introduction

Global Climate Models (GCM) are tools of primary im-
portance to study and simulate the climate, and to obtain fu-
ture climate projections under different anthropogenic forc-
ing scenarios [Solomon et al., 2007]. However, due to their
coarse resolution —generally few hundred kilometers— ,
they are not suitable for regional studies [Cohen, 1990].
This is especially true for Spain, a geographically com-
plex and heterogeneous region characterized by a great vari-
ability of precipitation regimes [Serrano et al., 1999; Trigo
and Palutikof , 2001]. Consequently, developing regional
climate scenarios is a key problem for climate change im-
pact/adaptation studies and has become a strategic topic in
national and international climate programs [see, e.g. the
WCRP CORDEX initiative, Giorgi et al., 2009].

Two different methodologies have been developed for
downscaling GCM simulations over a region of interest (e.g.
Europe). Firstly, dynamical downscaling is based on high
resolution (e.g. 25 km) limited area models —also called
Regional Climate Models (RCMs)— which are coupled at
the boundaries to the GCM outputs [Giorgi and Mearns,
1991]. Secondly, statistical downscaling techniques [Wilby
et al., 2004; Benestad et al., 2008] are based on statistical
models, fitted to historical data to capture the empirical
relationship between large-scale GCM variables (the pre-
dictors, e.g. 500mb geopotential) and local variables (the
predictands, e.g. precipitation at a given location); typi-
cally, these models are first trained using reanalysis data —
following the Perfect Prognosis (PP) approach— and later
applied to downscale GCM scenario outputs.

Traditionally, statistical downscaling has been used as an
alternative to dynamical downscaling, or vice-versa. How-
ever, due to the increasing availability of reanalysis-driven
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RCM simulations —produced in projects like ENSEMBLES
[van der Linden and Mitchell , 2009],— some authors have
recently suggested the possibility of combining the advan-
tages of the two downscaling methodologies. The idea is
applying the statistical downscaling directly to the RCM
outputs following the Model Output Statistics (MOS) ap-
proach [see Maraun et al., 2010, and references therein]. In
this case, the predictor is directly the RCM output variable
(i.e. the RCM precipitation), which is empirically related
to the observed variable (local precipitation at a station or
an interpolated grid point) by the statistical downscaling
algorithm. This alternative approach can be seen as an ad-
vanced calibration method for end-users, allowing the local
adaptation of RCM outputs using the high-resolution ob-
servations available in the area of interest. Note that, al-
though RCMs provide regional climate details compared to
the GCMs (with resolutions of tens and hundreds of kilome-
ters, respectively), the importance of calibration and down-
scaling of RCM outputs for climate change impact studies
has been pointed out and discussed in several studies [Fowler
et al., 2007; Christensen et al., 2008; Herrera et al., 2010a;
Quintana-Segúı et al., 2010; Fowler and Ekstroem, 2009].

In this study we analyze the state-of-the-art ensemble of
ten RCMs produced in the ENSEMBLES project at a 25
km resolution [see Kjellström et al., 2010, and other papers
in the same special issue]. In particular, we consider the
ERA40-driven simulation in the control period 1961-2000,
and focus on precipitation over Spain. In a recent paper,
Herrera et al. [2010a] show that some of these models have
strong biases and exhibit a poor performance when repro-
ducing the mean precipitation regime and annual cycle in
this region. In addition, they overestimate the frequency of
rainfall and they deficiently represent the extreme events.
In this paper, these models are statistically post-processed
applying a MOS version of the popular analog downscaling
technique [Lorenz , 1969] to their precipitation fields (this
method is hereafter referred to as MOS analog method).

The study has two main objectives: (1) testing the skill
of a MOS-like downscaling method for mean and extreme
precipitation in a complex area (with both Atlantic and
Mediterranean climates) at daily scale and (2) evaluating the
possibility to obtain more homogeneous and calibrated en-
sembles by improving the reliability of the worst-performing
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RCMs (those with higher biases and larger improving po-
tential).

The study is organized as follows. In Section 2, a short de-
scription of the precipitation characteristics in Spain is given
and the RCM and observational datasets used in the paper
are described; Section 3 presents the downscaling method
used, and Section 4 analyzes the validation results. Finally,
Section 5 synthesizes the main results and conclusions of
this study.

2. Region of Study and Data

The Iberian Peninsula —located on the south-west edge
Europe, between 36◦ and 44◦N and 10◦W and 3◦E— is an
important region for precipitation studies for two main rea-
sons. Firstly, precipitation plays a major role on water re-
sources and natural hazards in this area [Garrote et al., 2007;
Llasat , 2009], thus leading to one of the most vulnerable
countries to water scarcity, droughts and floods in Europe
[Kristensen, 2010]. Secondly, its complex orography and
particular location —at the transition area between extra-
tropical and subtropical influence [Jansá, 1997; Giorgi and
Lionello, 2008]— determines a great variety of climates with
both Atlantic and Mediterranean influences. Thus, precipi-
tation is characterized by a complex spatial pattern [Serrano
et al., 1999], with a strong seasonal cycle and large inter-
annual [Trigo and Palutikof , 2001] and spatial [Rodriguez-
Puebla et al., 1998; Romero et al., 1998; Martin-Vide, 2004;
Rodrigo and Trigo, 2007]) variability.

The annual precipitation decreases from north-west (with
a typical Atlantic precipitation regime) to south-east (with
a Mediterranean precipitation regime). The north has the
largest accumulated values (1000-2500 mm/year) with a
maximum in winter and rainfall spread out over the year.
The majority of the central part of the peninsula receives
less than 500 mm/year. The south-east is characterized by
a semiarid climate with areas with less than 100 mm/year.
Finally, the Mediterranean coast and part of the Ebro basin
exhibit bimodal Autumn-Spring maxima with accumulated
annual values of less than 700 mm/year, where frequent
drought periods alternate to heavy rainfall events [Llasat ,
2009]. Due to this strong variability, Spain represents a chal-
lenge area for downscaling studies [Herrera et al., 2010a].

2.1. Interpolated Observations: Spain02

The observed data of daily precipitation used in this
study is provided by the high-resolution (0.2◦ × 0.2◦, ap-
proximately 20 km × 20 km) gridded dataset Spain02 [Her-
rera et al., 2010b], which is publicly available for research
activities. This dataset was produced using data from 2756
quality-controlled stations from the Spanish Meteorological
Agency (AEMET), covering the Iberian Peninsula and the
Balearic Islands over the period 1950-2008 (see Figure 1).

This gridded precipitation dataset was produced apply-
ing the kriging method in a two-step process. First, the
occurrence was interpolated using a binary kriging and, in
a second step, the amounts were interpolated by apply-
ing ordinary kriging to the occurrence outcomes. Spain02
was validated against station data obtaining a good perfor-
mance for precipitation occurrence, accumulated amounts,
variability and seasonality. Moreover, an analysis of up-
per percentiles and extreme indicators revealed the capa-
bility of Spain02 to reproduce the intensity and spatial
variability of extremes [see Herrera et al., 2010b, and
http://www.meteo.unican.es/datasets/spain02 for more de-
tails].

This dataset has been used by Herrera et al. [2010a] to
evaluate the RCMs described in Sec. 2.2, assessing their
performance to reproduce both the mean and extreme pre-
cipitation regimes.

2.2. ENSEMBLES RCM dataset

The EU-funded project ENSEMBLES produced an en-
semble of regional simulations at a 25 km resolution using
state-of-the-art RCMs [van der Linden and Mitchell , 2009]
driven by both ERA40 reanalysis data [Uppala et al., 2005]
in a control period, and future A1B scenario simulations
of different GCMs. In this paper we consider the ERA40-
driven runs from ten models for the common period 1961-
2000 (see Table1). The main advantage of these runs is their
day-to-day correspondence, to some extent, with observa-
tions, since the RCM simulations are driven at the bound-
aries by the reanalysis. As we shall see in Sec. 4.3, this
property is the key reason for the successful application of
the MOS approach in this context. Moreover, the resulting
validation is a characteristic of each particular RCM, since
all the regional models have the same realistic (reanalysis)
boundary conditions.

Herrera et al. [2010a] evaluated the mean and extreme
precipitation regimes from these RCMs over Spain (with the
exception of the ICTP model, not available at the time of
their work) and reported a subset of five models best per-
forming over this region (indicated with an asterisk in Table
1). The resulting 5-model ensemble performed better than
the individual models and than the total ensemble.

For practical reason, the daily outputs of the RCMs were
bilinearly interpolated from their original resolution (25 km)
to the grid defined by Spain02 (20 km approximately). This
manipulation might decrease the quality of the simulated
data; however, in this case the data will be used as predic-
tor for the downscaling method and thus the interpolation
does not influence the final results.

3. Methodology: MOS based on Analogs

Perfect prognosis (PP) is the most popular and widely
used statistical downscaling approach at seasonal and cli-
mate change scales [see Benestad et al., 2008, and refer-
ences therein]. In this case, a statistical model is first de-
rived to relate the reanalysis —quasi-observations— large
scale predictors (e.g. sea level pressure) to the observed
local predictands (e.g. precipitation). Then, the result-
ing model is applied to obtain local projections of future
GCM simulations by using the corresponding GCM out-
puts as predictors. As an alternative to this approach, it
has been recently suggested [Maraun et al., 2010] that the
MOS methodology could be directly applied to the RCM
outputs, using a reanalysis-driven control period to train
and validate the methods. In this case, the predictor is
the RCM output variable (i.e. the predicted precipitation)
which is directly related to the observed variable using an
appropriate statistical method. Thus, this alternative may
overcome some of the known drawbacks of the PP meth-
ods, such as the underestimation of high intensity events
[Wilks and Wilby , 1999] and the spatial and temporal vari-
ability [Maraun et al., 2010]. Besides, the PP methods do
not necessarily provide consistency between different down-
scaled variables [Wilby and Wigley , 1997].

Some simple MOS methods have been recently proposed
in the literature to correct RCM simulations by an additive
term for temperature [Déqué, 2007] or by a scaling factor for
precipitation [Widmann et al., 2003]. Quantile mapping at-
tempts to correct the whole distribution [Déqué, 2007; Piani
et al., 2010]. MOS methods are still in a rather premature
state of development and substantial improvements are cur-
rently under development.

In this paper, we present a MOS adaptation of the popu-
lar analog methodology (hereafter referred to as MOS ana-
log). The analog method was first developed for weather
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Figure 1. (a) Topography of Spanish Iberian Peninsula and the Balearic Islands as represented by
Spain02 at 0.2◦ x 0.2◦, showing the main river basins: 0. Catalana, 1. Norte, 2. Duero, 3. Tajo, 4.
Guadiana, 5. Guadalquivir, 6. Sur, 7. Segura, 8. Levante, 9. Ebro, B. Baleares. (b) Annual precipitation
from Spain02 (mm) in the period 1961-2000, (c) in the wettest years and in the driest years (d); see Sec.
4 for the definition of the wettest and driest years.

Table 1. Summary of the RCM simulations nested in ERA40 data produced for the ENSEMBLES project. The
columns are the acronym used in the paper, the institution running the simulation, the model used and a reference
publication. The asterisks indicate the best performing models in this region according to Herrera et al. [2010a].

Acronym Institution Model Reference
CNRM Centre National de Recherches Meteo-

rologiques
ALADIN-Climat Radu et al. [2008]

DMI Danish Meteorological Institute HIRHAM Christensen et al. [2008]
ETHZ(*) Swiss Institute of Technology CLM Jaeger et al. [2008]
KNMI(*) Koninklijk Nederlands Meteorologisch

Instituut
RACMO Van Meijgaard et al. [2008]

HC(*) Hadley Center/UK MetOffice HadRM3 Q0 Collins et al. [2006]
ICTP Abdus Salam International Centre for

Theoretical Physics
RegCM3 Pal et al. [2007]

METNO The Norwegian Meteorological Insti-
tute

HIRHAM Haugen and Haakensatd [2005]

MPI(*) Max Planck Institute for Meteorology M-REMO Jacob [2001]
SMHI Swedish Meteorological and Hydrolog-

ical Institute
RCA Kjellström et al. [2005]

UCLM(*) Universidad de Castilla la Mancha PROMES Sanchez et al. [2004]

forecasting [Lorenz , 1969; Obled et al., 2002; Gibergans-
Baguena and Llasat , 2007] and later applied to climate
scales [Zorita et al., 1995; Cubasch et al., 1996; Zorita and
von Storch, 1999; Timbal et al., 2003; Benestad et al., 2008],
so it is nowadays a popular and widely used technique in
climate change studies. The analog method is based on the
hypothesis that “analogue” atmospheric patterns (predic-
tors) should cause “analogue” local effects (predictands).
This leads to a simple algorithm to infer the local occur-
rence associated with a given atmospheric pattern based on
the historical occurrences of a set of “analog days” (those
historical days with patterns more similar to the given one).
This can be simply done by considering the mean (or other
suitable statistic) of the historical local occurrences for the
analog days. The main advantages of this method are that
(1) it is able to reproduce nonlinear relationship between
predictors and predictands, (2) it is easy to implement with
low computational cost, and (3) it is able to reproduce real-
istic and spatially coherent precipitation patterns.

The main drawback of the method is that it cannot sim-
ulate unobserved weather patterns, although it can produce
accumulated values or frequencies over several days larger
(or smaller) than the historical values. This limitation is re-
lated to the assumption of “stationarity” [Wilby et al., 2004],
a common weakness of all the downscaling methods —the
parametrizations of the dynamical models and the statis-
tical relationship between predictors and predictands must
hold in the projected climate, which cannot be taken for
granted [Trenberth et al., 2003].— This limitation should be
cautiously taken into account for climate change studies, al-
though this problem can be mitigated using a long database
of observations with a great variety of situations [Zorita and
von Storch, 1999] and using robust statistical relationships
based on a small number of parameters and on a physi-
cal predictor/predictand relationship [Benestad et al., 2008;
Maraun et al., 2010]. This is the case of the MOS analog
method, where a unique predictor (model precipitation) is
used.

Given an historical training period (with known predic-
tors and predictands) and a projection period (with known
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predictors), the MOS analog downscaling consists of three
main steps to estimate the corresponding projected predic-
tands:

1. Selection of an appropriate subgrid within the RCM
domain over the area of study, capturing the physical scales
relevant for the predictand of interest (observed precipita-
tion in this case). In our case we consider the 0.2◦ subgrid
covering the Iberian Peninsula described in Sec. 2.2 and
consider the predictor pattern defined by the RCM precipi-
tation on this grid.

2. For each predictor pattern from the projection period,
the closest historical pattern (analog) within the training
period is computed considering the Euclidean distance be-
tween the two raw precipitation fields (according to Matulla
et al. [2007] this is a reasonable first choice among the stan-
dard measures of similarity). A larger number of analogs
were also considered, but a single analog exhibited the best
performance according to the validation metrics considered
in the study.

3. Then, the local precipitation projected for the predic-
tand (Spain02 ) is simply obtained as the historical occur-
rence of the predictand on the analog day.

In order to select the predictor domain, different exper-
iments were performed. We focused on the Ebro basin
(see Figure 1), which is a demanding test for a downscal-
ing method due to the large precipitation variability in this
region with Atlantic and Mediterranean influences. Three
predictor domains were considered: the Spain02 domain (i.e.
the Spanish Iberian Peninsula and the Balearic Islands), the
Mediterranean coast (i.e. the Mediterranean river basins
show in Figure 1), and, finally, the Ebro basin itself. Sev-
eral validation experiments were performed using these do-
mains with different RCMs and different train/test periods.
It came out that the skill was more influenced by the dif-
ferent test periods or different RCMs than by the different
domains. For this reason, the predictor domain for our ex-
periments over the Iberian Peninsula was Spain02.

4. Validation and Results

The skill of the MOS analog method has been evalu-
ated using a cross-validation approach, considering reanaly-
sis data and observations within the period 1961-2000. The
data was split into two subsets, 30 years for model train-
ing/calibration and 10 years for validation. To test the ro-
bustness of the statistical relationship in a changing climate,
two different test periods were used: the ten wettest years
and the ten driest years, respectively. Since the annual pre-
cipitation in Spain does not exhibit any general trend [Rı́o
et al., 2010], the wettest (driest) years have been identified
in the following way: the annual total precipitation for each
point has been standardized, spatially averaged and finally
sorted. The resulting wettest (driest) years are given in Ta-
ble 2. Note that cross validation requires that the test and
training samples are randomly drawn from the population;
thus, although the ten wettest (driest) years do not con-
form a proper test sample, our objective is measuring the
performance of the method in changing climate conditions
and, hence, the present cross-validation procedure provides
a more informative assessment of the downscaling methodol-
ogy regarding its suitability for future scenario simulations.

Two main approaches have been applied to evaluate the
skill of the downscaling [see Murphy , 1993, for a descrip-
tion of forecast validation]. Firstly, we compare the simu-
lated (both RCM outputs and MOS downscaled ones) and
observed climatologies (spatial patterns) considering stan-
dard reliability measures (Sec. 4.1) and the annual cycle
(Sec. 4.2). Secondly, since the reanalysis-driven RCM sim-
ulations acquire certain day-to-day correspondence with ob-
servations, the simulated and observed time series are also
compared at a grid-point basis using standard accuracy mea-
sures (Section 4.3).

Table 2. Climatic mean and extreme indices
for precipitation used in this work (see also ETCCDI
http://cccma.seos.uvic.ca/ETCCDI).

label description units
PRCPTOT total precipitation mm
SDII mean precipitation amount on a wet

day
mm

R10 number of days with precipitation over
10 mm/day

day

R20 number of days with precipitation over
20 mm/day

day

RX1DAY maximum precipitation in 1 day mm
RX5DAY maximum precipitation in 5 days mm
CDD consecutive dry days ( < 1mm) day
CWD consecutive wet days ( > 1mm) day

4.1. Reliability of the mean and extreme climates

The ability of RCMs and MOS analog to reproduce the
annual climatology (spatial pattern) for the precipitation in-
dices shown in Table 3 has been tested. These indices were
computed working with daily data and are a subset of the
standard ETCCDI indices characterizing total precipitation,
dry and wet spells and extremes [WMO , 2009].

Simple performance scores (bias, mean absolute error and
correlation) were computed for the spatial pattern of the
annual indices and averaged over the ten year wet (dry) val-
idation periods, respectively:
• ME : Normalized spatial mean error (or bias)

ME =
1

n ·O

n∑
i=1

(Yi −Oi) (1)

• MAE : Normalized spatial mean absolute error

MAE =
1

n ·O

n∑
i=1

|Yi −Oi| (2)

where Yi and Oi are the simulated and observed indices, re-
spectively, for the i-th grid-point (n = 1445), averaged over
the ten year period of validation. Note that these values
are normalized to the spatial mean of the observations O
[Bachner et al., 2008].

• CORR: Spatial correlation calculated by the Spearman
rank correlation coefficient

CORR = 1−
6 ·

∑n

i=1
D2

i

n · (n2 − 1)
, (3)

where Di is the difference in ranks of the i-th data pair
(Yi, Oi). Note that the Spearman correlation is more robust
to outliers and linearity than the classical Pearson correla-
tion.

These scores were calculated both for the original RCM
simulations and for the MOS analog downscaled values
(ME1 and ME2, respectively, for the first score) and the
resulting differences were statistically tested for significance
(the null hypothesis is ME1−ME2 = 0) applying bootstrap
resampling with 1000 realizations, obtaining the 95% confi-
dence intervals [Efron and Tibshirani , 1993]. Bachner et al.
[2008] applied a similar test to evaluate the skill differences
among RCMs.

As an illustrative example, and for the sake of simplicity,
in Figure 2 we show the comparison maps for the KNMI
model and the corresponding MOS analog values for the
wet test period; note that this RCM has been chosen since
it is one of the most skillful for precipitation in this region
[see Herrera et al., 2010a, and Figure 3]. The panels in
this figure show the annual values of the indices (averaged
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Figure 2. Spatial distribution of the observed (left), downscaled (central) and RCM (right) mean values
(averaged over the wet validation period) for the precipitation indices shown in Table 3. The spatial vali-
dation scores (correlation and errors) for the MOS analog and RCM simulated values are given below the
corresponding panels. The asterisks next to the MOS (or RCM) scores indicate those situations where
the score is significantly better (larger for correlation and smaller for errors) than the one corresponding
to the RCM (or MOS), respectively.
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Table 3. The ten wettest and the ten driest years in Spain within the period 1961-2000. The years have been
obtained by ranking the grid-point standardized spatially averaged precipitation.

Period Years
Wettest 1996, 1969, 1997, 1979, 1963, 1972, 1977, 1989, 1971 and 1987
Driest 1964, 1998, 1994, 1990, 1970, 1967, 1983, 1973, 1980 and 1981

in the validation period of ten years) for the observed grid
Spain02 (first column) the MOS analog downscaled values
(second column) and the regional KNMI simulations (third
column); the numbers below the figures indicate the correla-
tion (CORR), bias (ME) and mean absolute error (MAE)
values for the MOS analog and RCM with regards to the
observed ones. An asterisk next to the MOS, or RCM, in-
dicate those values where the score is significantly better
(P −value < 0.05) than the one corresponding to the RCM,
or MOS, respectively. This figure shows that the MOS ana-
log downscaled values clearly outperform the uncalibrated
RCM outputs, with significant differences in most of the
cases.

Figure 3 summarizes the verification results for all the
models and indices shown in Table 3 considering the scores
defined previously. The RCMs have been ranked from 1 to
10 according to the correlation value of total precipitation
(PRCPTOT ) for the wet period (upper left panel of the
figure 3). This ranking agrees with Herrera et al. [2010a].
The 95% confidence interval for each individual score is also
shown, as a vertical line displayed over the MOS analog
downscaled values (filled circles). Thus, when the RCM val-
ues (circles) are outside this interval, the differences are sta-
tistically significant (P − value < 0.05). The values above
(or below) the upper (or lower) axis bounds are displayed as
gray shaded circles; for instance, correlations smaller than
0.5 are not shown in the figure and, hence, cases with smaller
values are just marked with a gray shaded circle. This figure
shows that, overall, the same correlation and error patterns
are obtained for wet (upper panels) and dry (lower) test
periods, with slightly better results in the later case. The
MOS analog downscaling method dramatically improves the
RCM results for PRCPTOT , SDII, CWD, R10 and R20,
with correlation values larger than 0.9 in all cases and with
smaller MAEs and MEs. The improvement is also evident
for the extremes RX1DAY and RX5DAY , with correla-
tions larger than 0.8; however, in this case the MAEs and
MEs improvement is smaller than for the previous scores.

Regarding the ME, even thought the MOS analog tends
to underestimate the indices studied, it is able to reduce the
ME of the RCMs in the dry period —with the exception of
RX5DAY index,— while it leads to similar or worse ME in
the majority of cases for the wet period. The MOS analog
downscaling method is also able to improve the MAE score
for all the RCMs and for all the indices considered, with
few exceptions for some RCMs in the case of RX5DAY and
CWD, considering the wet test period. Generally, the MAE
of the MOS analog is slightly bigger when it is tested in the
wettest period. This may be a result of the relatively short
training period the MOS analog was based on, with a rela-
tively low sampling of the heavy precipitation amount.

Note that although PRCPTOT is overestimated for most
of the RCMs, the precipitation on wet days (SDII) is un-
derestimated. This problem is due to the overestimation
of rainfall frequency by RCMs, as they tend to drizzle [see,
e.g. Gutowski et al., 2003]. However, as it is shown in this
figure 3, the MOS analog solves this problem, leading to
unbiased estimates of both indices (except in the wet test
period, where the downscaled total precipitation is slightly
underestimated).

The index CDD is the one with worst performance for the
MOS analog method, providing only a slight improvement
over the values of the RCM. In fact, our algorithm is able

to improve the ME and MAE of the CDD, but not always
its correlation (in particular in the case of the ITCP model,
probably due to the great overestimation of the rainy days
by this model). As we show in Sec. 4.3, the CDD index
is highly sensitive to the autocorrelation of the time series
and, consequently, to the accuracy of the RCM. This should
be further investigated by modifying the analogue search to
match not only a given rainfall pattern but a pattern suc-
cession or, in other words, considering dynamical patterns
[see for instance the work of Gutiérrez et al., 2004].

Overall, the MOS analog method is able to improve the
above considered reliability scores for different indices (Table
3) for all RCMs, thus attaining an appropriate calibration
in all cases, regardless of their respective skills. This is the
main advantage of the MOS analog methodology, based on
a resampling of the observed space driven by the historical
analogs of RCM fields. As we show in Sec. 4.3 this calibra-
tion is done preserving the daily accuracy of the RCM and,
thus, the downscaled output can be considered a calibrated
local version of the RCM values. This is an important result
since it permits to enlarge the ensemble of RCMs avoiding
discarding those with bad reliability, since they can have a
similar accuracy and could be calibrated as shown in this
work.

Finally, the results reported in this section show that,
although the MOS analog downscaling improved the RCM
results in wet and dry periods, the added value in the former
period is less evident (since it cannot simulate unobserved
weather patterns) and, consequently, it should be cautiously
considered in the projection of future climate scenarios.

4.2. Validation over the annual cycle

As already mentioned, the precipitation in Spain is char-
acterized by a large variability in space and time. In par-
ticular the Iberian rainfall has a strong seasonal cycle that
differs considerably among the river basins shown in Figure
1a. In the previous section we evaluated the performance of
the MOS analog method to represent the annual climatolo-
gies of different indices. In this section, in order to assess
the correspondence of the simulated and observed annual
cycles, we analyze the performance of the methods in the
different river basins at a monthly scale. A recent study has
shown the capability of RCMs to simulate the annual pre-
cipitation cycle in the different river basins, specially using a
five-member ensemble formed by the best performing RCMs
[Herrera et al., 2010a]. In this section we also consider this
five-model ensemble (indicated by asterisks in Table 1), but
we focus on extremes. Thus, we consider the annual cycle of
the RX1DAY , i.e. the monthly maximum value, averaging
the grid point indices at a basin level, thus providing use-
ful information for hydrological studies. It is important to
underline that the spatial averages smooths the peaks, since
the distribution is not uniform over the area; to analyse this
effect the calculations were repeated considering the stan-
dardized (to zero mean and unit variance) individual point
series, obtaining similar results in qualitatively terms (e.g.
the shape of the different precipitation regimes). For this
reason we show the spatial averaged series calculated with
the original series, since they provide useful quantitative in-
formation.

Figure 4 considers the wet test period, showing the ob-
served RX1DAY values (black line) and the simulated val-
ues for the ensemble of RCMs (light shade) and MOS analog
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Figure 3. Summary of validation results for CORR, ME and MAE for the different indices and val-
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values (dark shade). For a better comparison, all the plots
have the same scale, ranging from 0 to 60 mm. The annual
cycle is reproduced quite properly by both the RCMs and
MOS analog downscalings, with a reduced spread (smaller
uncertainty) in the later case. Similar results have been ob-
tained in the dry test period, or considering the full ensem-
ble (not shown). In the Mediterranean basin (defined by the
union of the Segura, Levante, Ebro, Catalana and Baleares
river basins), the RX1DAY cycle presents two maximum
periods, the major one in autumn (in the range of around
20-35 mm) and the secondary in spring (around 15-25 mm),
although the amounts differ among the basins. This charac-
teristic is also present considering the total precipitation in-
stead of the maximum value and it is a representative aspect
of the Western Mediterranean climatology [Romero et al.,
1998]. Here, the RX1DAY values are usually due to con-
vective events [Llasat , 2001], leading also to a higher RCM
spread —note that the convective parametrization schemes
are an important source of error in RCM simulated precip-
itation [Hohenegger et al., 2008].— The remaining basins
have a maximum in winter, with values in the range 20-35
mm, and a minimum in summer, with values ranging from
5 mm (Baleares, Guadalquivir and Sur) to 20 mm (North
basin).

The performance of the MOS analog method to reproduce
the observed seasonal cycles in the different basins is quite
remarkable, with the only exception of the autumn months
(mainly September) in the Segura and Levante river basins,
where the series show the maximum values (also the maxi-
mum spread), which is underestimated by the MOS analog.

In order to better investigate this aspect, the RX1DAY dif-
ferences among the different RCMs and the corresponding
MOS analog values, and the observed series for September
have been reported in Figure 5, for each river basin and
for the two test periods (wet and dry, in rows). The differ-
ent colors in the figure show relative errors, i.e., the abso-
lute difference of simulated and observed value divided by
the observed value. The biggest errors appear for the Sur,
Guadalquivir, Guadiana, Segura, Levante and Baleares river
basins, i.e. the south and the Mediterranean river basins.
Considering the latter, it is remarkable how the MOS analog
downscaling method reduces the error of the corresponding
RCM during the test dry period; however, it has similar
or worst performance during the wet periods. In the other
basins, the MOS analog downscaling method has generally
similar or better performance the RCM error regardless of
the period (wet or dry).

Regarding the ten models analyzed in Figure 5, DMI,
ETHZ, KNMI and SMHI have the lowest errors, lower than
50% in the majority of the cases. There is not best RCM for
all river basins and situations. This variability of the per-
formance of the RCMs supports the use of an ensemble of
RCM simulations in impact studies, both for improving the
performance and for estimating the uncertainty. Another
consequence is that disregarding one RCM because performs
poorly in one fixed period in a certain area could lead to a
loss of valuable information for other periods/areas.



TURCO ET AL.: TESTING MOS DOWNSCALING OVER SPAIN X - 9

2 4 6 8 10 12
0

20

40

60

5. Guadalquivir

month

m
m

2 4 6 8 10 12
0

20

40

60

4. Guadiana

month

m
m

2 4 6 8 10 12
0

20

40

60

8. Levante

month

m
m

2 4 6 8 10 12
0

20

40

60

1. North

month

m
m

2 4 6 8 10 12
0

20

40

60

7. Segura

month

m
m

2 4 6 8 10 12
0

20

40

60

6. South

month

m
m

2 4 6 8 10 12
0

20

40

60

3. Tajo

month

m
m

2 4 6 8 10 12
0

20

40

60

B. Baleares

month

m
m

2 4 6 8 10 12
0

20

40

60

0. Catalana

month

m
m

2 4 6 8 10 12
0

20

40

60

2. Duero

month

m
m

2 4 6 8 10 12
0

20

40

60

9. Ebro

month
m

m

Figure 4. Seasonal cycle (long-term averaged monthly values) of the spatially averaged RX1DAY
index (in mm) for each river basin (according to Figure 1a). The black line represents the observed
(Spain02 ) climatology. The light shaded band spans the values for the RCMs while the dark one spans
the respective MOS downscaled values. The results correspond to the wet test period.
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4.3. Accuracy of the Daily Series

In this section we test the daily accuracy of RCM
simulations and the corresponding MOS analog values.
To this aim, at each grid box, we computed the relative
mean absolute error (as in Eq. 1) and the Spearman
correlation between the simulated series and the obser-
vations. Table 4 summarizes the results for all models
and test periods considered. The different performance
metrics are provided in columns and the RCMs and
test periods in rows. This table shows that the MOS
analog technique greatly improves the correlation and
preserves (or slightly improves) the RCM MAEr, with
smaller spatial variability of the results (see, e.g. the
MAEr quantities in Table 4).

In order to illustrate the spatial distribution of the
scores, for the sake of simplicity we only consider here
the ETHZ model (see Figure 6); the numbers above the
figure indicate the spatial median and the interquar-
tile range (IQR) of the scores considered, as in Table
4. The MAEr highlights the greater difficulties of the
RCMs and the MOS analog method to reproduce the
precipitation in the Mediterranean area; moreover, it
shows that there are not substantially differences of the
score between the two test periods. However, examining
in detail the MAEr quantities in Table 4 and Figure 6,
some differences in the performance between the RCMs
and the MOS downscaled counterparts stand out. Gen-
erally the MOS analog has slightly greater values of the
lowest value of the IQR (25th percentile, in the west
part of the area), while the RCMs have greater values
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of the biggest value of the IQR (75th percentile, in the
Mediterranean area).

The best correlation scores for the ETHZ model are
obtained in central-south Spain, while lower correlation
values are along the mountains on the north and the
Mediterranean; this pattern is common to all the RCMs
analyzed, with a west/east decreasing skill. However,
the MOS analog technique provides a more uniform cor-
relation pattern with low values restricted to the North.
Considering the two test periods, it can be seen that the
MOS analog shows lower correlation during the wet pe-
riod than in the dry one, whereas the RCMs do not

have this correlation dependence on the test period.
Nevertheless, although the MOS correlation decreases
in the wet period, it is still better than the RCM. This
improvement is mainly related to ability of the MOS
analog to reduce the drizzle days of the RCMs. Indeed,
considering only the rain days (> 1mm), the correla-
tion pattern is similar among the MOS analog and the
respective RCMs, with a west to east gradient, with
values of the same order, around 0.3. These results are
also valid when considering the seasonal series instead
of the annual ones, with accuracy measures of the same
order of magnitude (e.g. correlations around to 0.65).

Table 4. Accuracy scores for the MOS analog and RCM methods. Each cell shows the median and IQR (in
parenthesis) of the spatial distribution of the CORR and the MAEr, for the RCMs and the respective MOS
analog, for the wet and dry test period.

CORR MAEr
MOS RCM MOS RCM

CNRM DRY 0.70 (0.61/0.75) 0.48 (0.45/0.52) 1.49 (1.38/1.68) 1.84 (1.43/2.25)
WET 0.63 (0.55/0.69) 0.45 (0.40/0.50) 1.34 (1.21/1.46) 1.63 (1.30/1.99)

DMI DRY 0.76 (0.70/0.80) 0.58 (0.51/0.60) 1.24 (1.14/1.37) 1.23 (1.00/1.50)
WET 0.69 (0.64/0.74) 0.59 (0.54/0.63) 1.16 (1.07/1.31) 1.17 (0.95/1.42)

ETHZ DRY 0.76 (0.70/0.80) 0.63 (0.59/0.69) 1.28 (1.18/1.40) 1.27 (1.05/1.53)
WET 0.69 (0.64/0.73) 0.62 (0.58/0.69) 1.20 (1.12/1.34) 1.22 (1.02/1.49)

ICTP DRY 0.74 (0.68/0.78) 0.58 (0.53/0.64) 1.34 (1.24/1.47) 1.70 (1.33/2.16)
WET 0.67 (0.61/0.71) 0.57 (0.51/0.64) 1.22 (1.14/1.36) 1.48 (1.18/1.88)

KNMI DRY 0.76 (0.70/0.80) 0.59 (0.56/0.65) 1.29 (1.17/1.43) 1.27 (1.01/1.48)
WET 0.70 (0.64/0.75) 0.60 (0.55/0.67) 1.16 (1.06/1.30) 1.14 (0.93/1.35)

METNO DRY 0.76 (0.71/0.80) 0.62 (0.58/0.67) 1.23 (1.12/1.39) 1.33 (1.08/1.60)
WET 0.69 (0.63/0.74) 0.61 (0.56/0.66) 1.18 (1.07/1.32) 1.28 (1.05/1.53)

METO-HC1 DRY 0.73 (0.66/0.77) 0.56 (0.53/0.60) 1.36 (1.25/1.53) 1.35 (1.12/1.57)
WET 0.66 (0.60/0.71) 0.55 (0.51/0.60) 1.24 (1.15/1.39) 1.28 (1.06/1.51)

MPI DRY 0.76 (0.71/0.80) 0.59 (0.55/0.61) 1.24 (1.14/1.38) 1.35 (1.10/1.56)
WET 0.70 (0.65/0.75) 0.59 (0.54/0.63) 1.15 (1.06/1.28) 1.27 (1.03/1.48)

SMHI DRY 0.76 (0.71/0.81) 0.61 (0.56/0.67) 1.23 (1.13/1.39) 1.27 (0.97/1.53)
WET 0.70 (0.65/0.75) 0.62 (0.55/0.67) 1.16 (1.07/1.32) 1.18 (0.83/1.45)

UCLM DRY 0.68 (0.61/0.73) 0.54 (0.49/0.60) 1.53 (1.43/1.63) 1.52 (1.30/1.76)
WET 0.63 (0.56/0.68) 0.52 (0.47/0.57) 1.30 (1.23/1.40) 1.34 (1.15/1.58)
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Figure 7. Spatial error (MAE) of the precipitation in-
dices (a) PRCPTOT and (b) CDD for the MOS analog
method as a function of the accuracy of the RCM, mea-
sured as the daily temporal correlation of the RCM train-
ing surrogate data and the observations. The dashed lines
indicate the reliability (MAE) of the RCM; see running
text for more details.

Finally, it has been tested how the daily accuracy of
the RCMs influences the reliability of the MOS analog
downscaling method. This was achieved by comparing
the original MOS downscaled series with several surro-
gated series obtained resampling the years of the RCMs
in the calibration period. That is, it has been consid-
ered different surrogate training periods in which the
years of the RCMs have been gradually rearranged ob-
taining a gradual loss in the correspondence between
the RCM and the observed fields. The surrogates have
been done iteratively by randomly swapping an increas-
ing number of years, from 0 (original series) to 30 years,
thus progressively destroying the accuracy of the RCM
in the training period, while keeping the seasonal struc-
ture. As an illustrative example, and for sake of brevity,
in Figure 7 we show the results for the ETHZ model,
considering the wet test period. As a measure of the
accuracy of the RCM, we consider the daily temporal
correlation between the RCM surrogate series and the
observations; the reliability (spatial MAE) of the RCM
in the test period is shown by a dashed line (it is con-
stant since only the RCM years in the calibration period
are resampled, not the ones in the test period) whereas
the reliability of the MOS downscaled values (for the
different surrogate training periods) are marked with
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circles. Figure 7a shows the results for PRCPTOT ,
where the reliability of the RCM keeps a constant value
of 0.23, whereas the MOS analog constantly improves
this value up to 0.12 (for the original data, i.e. without
resampling). Therefore, as the accuracy of the RCM im-
proves, the MOS analog allows improving the reliability
of the downscaled series. Figure 7b shows the case for
CDD; in this case, since the variable is strongly related
to the autocorrelation of the series, it is much more sen-
sitive to the accuracy and an improvement of reliability
is only obtained for high RCM accuracy values (in this
example for correlation greater than about 0.55). This
analysis gives valuable information regarding the mini-
mum RCM accuracy needed for the MOS analog down-
scaling method in order to perform a proper calibration
of the RCM, improving the reliability.

5. Summary and conclusions

In this study we introduced a new Model Out-
put Statistics (MOS) downscaling technique based on
analogs (MOS analog), and applied it to downscale pre-
cipitation in Spain. Our main goals were: (1) to test
the skill of a MOS-like methodology for downscaling
RCM simulated precipitation over a complex area and
(2) to evaluate the possibility to calibrate relatively low
performing RCMs using this methodology. To achieve
these objectives we used the state-of-the-art ensemble
of ERA40-driven RCM simulations over the common
period 1961-2000 provided by the EU-funded ENSEM-
BLES, as well as a gridded precipitation database de-
veloped from thousands of quality controlled stations
(Spain02 ) for Spain, a region with high spatial and tem-
poral precipitation variability.

The MOS analog method was applied considering the
RCM precipitation as the single predictor; this variable
has been reported in different studies as the most in-
formative for precipitation downscaling purposes, but
it is avoided in perfect prognosis downscaling studies
since it is very model dependent (e.g. different param-
eterizations in different models) and, thus, there may
be significative differences between the reanalysis and
the GCMs. This problem does not exist in the MOS
setting (the RCM precipitation is used both for train-
ing and test) allowing us to define a very simple and
parsimonious method.

One of the main advantages of the method is that it
allows improving the reliability of the RCMs while pre-
serving (or even improving, e.g. for correlation) their
accuracy, regardless their own reliability.

The improvements are very good for the mean pre-
cipitation indices (e.g. PRCPTOT and SDII) and
also for the frequency (e.g. CDD) and the extreme
indices (e.g. RX1DAY ). The ability of the method
to reproduce the annual cycle of RX1DAY was also
tested. It has been found that this index is reproduced
quite well at the basin scale by the RCMs and that

the MOS improves the results of the RCMs, reducing
the spread of the ensemble. In this regard, the method
has more difficulties in the Mediterranean basins in au-
tumn, which was expected, due to the importance of
convective events.

The conditions under which the MOS analog im-
proves the reliability of the RCM were tested by re-
sampling the training years of the RCMs, i.e. varying
the accuracy of the model. Generally, as the accuracy
of the RCM improves, the MOS analog improves the re-
liability while keeping ( e.g. MAE) or improving (cor-
relation) the original accuracy. Besides, being able to
calibrate the RCMs, the MOS analog has other advan-
tages: it maintains the spatial coherence of the precip-
itation fields (which is very important for hydrology);
it is simple and parsimonious, so it is more robust than
other complex methods used in perfect prognosis; and
it performs well in the different climates of Spain, which
gives confidence in the transferability of the method to
other regions.

One important limitation of the analog method is
that it is not able to produce events outside those which
are present in the historical archive. To test how this
limitation affects our implementation, all the evalua-
tions were carried out considering two test periods: a
wet period and a dry one. As a result we obtained that
the performance of the MOS analog method decreases
slightly in the former case. Since the analog method-
ology works as a case-based learning algorithm (using
predictor-predicand cases from a historical database),
it is reasonable to obtain a poorer performance in those
situations worst represented in the historical database.
This is the case for the wet test period, since most of
the wettest days are used as a test sample and, there-
fore, are unusual cases within the remaining historical
database. Contrarily, dry test periods are less sensitive
to this problem, since the driest case (days with no rain)
is common in the database.

Finally, the application of this method to down-
scale future RCM scenarios (driven by GCMs simu-
lations in different forcing emission scenarios) is tech-
nically straightforward, since the analog search would
consist in matching the future RCM predictor patterns
and the closest historical pattern from the reanalysis-
driven RCM control simulations. The main limitation
is that related to the stationarity problem, explored in
this paper considering the wet and dry periods. From
this preliminary analysis, the poorer performance of the
method in wetter periods affects the applicability in ar-
eas where the regional climate simulations indicate wet-
ter conditions. Note however that this is not the case
of Spain; indeed the most recent and complete ensem-
bles of global and regional climate simulations generally
agree on a future drying precipitation in the southern
Europe [Giorgi and Lionello, 2008]. Thus, this method
could be confidently used to generate future regional
scenario of precipitation in Spain, which will be the fo-
cus of a future paper, analyzing also in more detail the
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problem of stationarity, e.g. testing the validity of the
statistical relationship in a surrogate climate as in Frias
et al. [2006].
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